Positive Feedbacks in the Economy
A new economic theory elucidates mechanisms whereby small chance events early in the history of an industry or technology can tilt the competitive balance

by W. Brian Arthur

Conventional economic theory is built on the assumption of diminishing returns. Economic actions engender a negative feedback that leads to a predictable equilibrium for prices and market shares. Such feedback tends to stabilize the economy because any major changes will be offset by the very reactions they generate. The high oil prices of the 1970's encouraged energy conservation and increased oil exploration, precipitating a predictable drop in prices by the early 1980's. According to conventional theory, the equilibrium marks the "best" outcome possible under the circumstances: the most efficient use and allocation of resources.

Such an agreeable picture often does violence to reality. In many parts of the economy, stabilizing forces appear not to operate. Instead positive feedback magnifies the effects of small economic shifts; the economic models that describe such effects differ vastly from the conventional ones. Diminishing returns imply a single equilibrium point for the economy, but positive feedback-increasing returns-makes for many possible equilibrium points. There is no guarantee that the particular economic outcome selected from among the many alternatives will be the "best" one. Furthermore, once random economic events select a particular path, the choice may become locked-in regardless of the advantages of the alternatives. If one product or nation in a competitive marketplace gets ahead by "chance," it tends to stay ahead and even increase its lead. Predictable, shared markets are no longer guaranteed.

During the past few years I and other economic theorists at Stanford University, the Santa Fe Institute in New Mexico and elsewhere have been developing a view of the economy based on positive feedback. Increasing-returns economics has roots that go back 70 years or more, but its application to the economy as a whole is largely new. The theory has strong parallels with modern nonlinear physics (instead of the pre-20th-century physical models that underlie conventional economics), it requires new and challenging mathematical techniques and it appears to be the appropriate theory for understanding modern high-technology economies.

The history of the videocassette recorder furnishes a simple example of positive feedback. The VCR market started out with two competing formats selling at about the same price: VHS and Beta. Each format could realize increasing returns as its market share increased: large numbers of VHS recorders would encourage video outlets to stock more prerecorded tapes in VHS format, thereby enhancing the value of owning a VHS recorder and leading more people to buy one. (The same would, of course, be true for Beta-format players.) In this way, a small gain in market share would improve the competitive position of one system and help it further increase its lead.

Such a market is initially unstable. Both systems were introduced at about the same time and so began with roughly equal market shares: those shares fluctuated early on because of external circumstance, "luck" and corporate maneuvering. Increasing returns on early gains eventually tilted the competition toward VHS; it accumulated enough of an advantage to take virtually the entire VCR market. Yet it would have been impossible at the outset of the competition to say which system would win. Which of the two possible equilibria would be selected. Furthermore, if the claim that Beta was technically superior is true, then the market's choice did not represent the best economic outcome.

Conventional economic theory offers a different view of competition between two technologies or products performing the same function. An example is the competition between water and coal to generate electricity. As hydroelectric plants take more of the market, engineers must exploit more costly dam sites, thereby increasing the chance that a coal-fired plant will be cheaper. As coal plants take more of the market, they bid up the price of coal (or trigger the imposition of costly pollution controls) and so tip the balance toward hydropower. The two technologies end up sharing the market in a predictable proportion that best exploits the potentials of each, in contrast to what happened to the two video-recorder systems.

The evolution of the VCR market would not have surprised the great Victorian economist Alfred Marshall, one of the founders of today's conventional economics. In his 1890 Principles of Economics, he noted that if firms' production costs fall as their market shares increase, a firm that simply by good fortune gained a high
proportion of the market early on would be able to best its rivals; "whatever firm first gets a good start" would corner the market. Marshall did not follow up this observation, however, and theoretical economics has until recently largely ignored it.

Marshall did not believe that increasing returns applied everywhere; agriculture and mining-the mainstays of the economies of his time—were subject to diminishing returns caused by limited amounts of fertile land or high-quality ore deposits. Manufacturing, on the other hand, enjoyed increasing returns because large plants allowed unproved organization. Modern economists do not see economies of scale as a reliable source of increasing returns. Sometimes large plants have proved more economical; often they have not.

I would update Marshall's insight by observing that the parts of the economy that are resource-based (agriculture, bulk-goods production, mining) are still for the most part subject to diminishing returns. Here conventional economics rightly holds sway. The parts of the economy that are knowledge-based on the other hand are largely subject to increasing returns. Products such as computers, pharmaceuticals, missiles, aircraft, automobiles, software, telecommunications equipment or fiber optics are complex to design and to manufacture.

They require large initial investments in research, development and tooling, but once sales begin incremental production is relatively cheap. A new airframe or aircraft engine, for example, typically costs between $2 and $3 billion to design develop, certify and put into production. Each copy thereafter costs perhaps $50 to $100 million. As more units are built, unit costs continue to fall and profits increase.

Increased production brings additional benefits: producing more units means gaining more experience in the manufacturing process and achieving greater understanding of how to produce additional units even more cheaply. Moreover, experience gained with one product or technology can make it easier to produce new products incorporating similar or related technologies. Japan for example leveraged an initial investment in building precision instruments into a capacity for building consumer electronics products and then the integrated circuits that went into them.

Not only do the costs of producing high-technology products fall as a company makes more of them, but the benefits of using them increase. Many items such as computers or telecommunications equipment work in networks that require compatibility; when one brand gains a significant market share, people have a strong incentive to buy more of the same product so as to be able to exchange information with those using it already.

If increasing returns are important, why were they largely ignored until recently? Some would say that complicated products-high technology-for which increasing returns are so important, are themselves a recent phenomenon. This is true but is only part of the answer. After all, in the 1940's and 1950's, economists such as Gunnar K. Myrdal and Nicholas Kaldor identified positive-feedback mechanisms that did not involve technology. Orthodox economists avoided increasing returns for deeper reasons.

Some economists found the existence of more than one solution to the same problem distasteful—unscientific. "Multiple equilibria," wrote Joseph A. Schumpeter in 1954, "are not necessarily useless, but from the standpoint of any exact science the existence of a uniquely determined equilibrium is, of course, of the utmost importance, even if proof has to be purchased at the price of very restrictive assumptions; without any possibility of proving the existence of a uniquely determined equilibrium—or at all events, of a small number of possible equilibria—at however high a level of abstraction, a field of phenomena is really a chaos that is not under analytical control."

Other economists could see that
On the other hand, if by some chance a market started with several identical firms, their market shares would remain poised in an unstable equilibrium forever.

S t u d y i n g such problems in 1979, I believed I could see a way out of many of these difficulties. In the real world, if several similar-size firms entered a market at the same time, small fortuitous events-unexpected orders, chance meetings with buyers, managerial whims—would help determine which ones achieved early sales and, over time, which firm dominated. Economic activity is quantized by individual transactions that are too small to observe, and these small “random” events can accumulate and become magnified by positive feedbacks so as to determine the eventual outcome. These facts suggested that situations dominated by increasing returns should be modeled not as static, deterministic problems but as dynamic processes based on random events and natural positive feedbacks, or nonlinearities.

With this strategy an increasing-returns market could be recreated in a theoretical model and watched as its corresponding process unfolded again and again. Sometimes one solution would emerge, sometimes (under identical conditions) another. It would be impossible to know in advance which of the many solutions would emerge. In any given run, it would be possible to record the particular set of random events leading to each solution and to study the probability that a particular solution would emerge under a certain set of initial conditions. The idea was simple, and it may well have occurred to economists in the past. But making it work called for nonlinear random-process theory that did not exist in their day.

Every increasing-returns problem need not be studied in isolation; many turn out to fit a general nonlinear probability schema. It can be pictured by imagining a table to which balls are added one at a time; they can be of several possible colors—white, red, green or blue. The color of the ball to be added next is unknown but the probability of a given color depends on the current proportions of colors on the table. If an increasing proportion of balls of a given color increases the probability of adding another ball of the same color, the system can demonstrate positive feedback. The question is, Given the function that maps current proportions to probabilities, what will be the proportions of each color on the table after many balls have been added?

In 1931 the mathematician George Pólya solved a very particular version of this problem in which the probability of adding a color always equaled its current proportion. Three U.S. probability theorists, Bruce M. Hill of the University of Michigan at Ann Arbor and David A. Lane and William D. Sudderth of the University of Minnesota at Minneapolis, solved a more general, nonlinear version in 1980. In 1983 two Soviet probability theorists, Yuri M. Ermoliev and Yuri M. Kaniovski, both of the Glushkov Institute of Cybernetics in Kiev, and I found the solution to a very general version. As balls continue to be added, we proved, the proportions of each color must settle down to a “fixed point” of the probability function—a set of values where the probability of adding each color is equal to the proportion of that color on the table. Increasing returns allow several such sets of fixed points.
This means that we can determine the possible patterns or solutions of an increasing-returns problem by solving the much easier challenge of finding the sets of fixed points of its probability function. With such tools, economists can now define increasing-returns problems precisely, identify their possible solutions and study the process by which a solution is reached. Increasing returns are no longer "a chaos that is not under analytical control."

In the real world, the balls might be represented by companies and their colors by the regions where they decide to settle. Suppose that firms enter an industry one by one and choose their locations so as to maximize profits. The geographic penchant of each firm (the intrinsic benefits it gains from being in a particular region) varies; chance determines the preference of the next firm to enter the industry. Also suppose, however, that firms' profits increase if they are near other firms (their suppliers or customers). The first firm to enter the industry picks a location based purely on geographic preference. The second firm decides based on preference modified by the benefits gained by locating near the first firm. The third firm is influenced by the positions of the first two firms, and so on. If some location by good fortune attracts more firms than the others in the early stages of this evolution, the probability that it will attract more firms increases. Industrial concentration becomes self-reinforcing.

The random historical sequence of firms entering the industry determines which pattern of regional settlement results, but the theory shows that not all patterns are possible. If the attractiveness exerted by the presence of other firms always rises as more firms are added, some region will always dominate and shut out all others. If the attractiveness levels off, other solutions, in which regions share the industry, become possible. Our new tools tell us which types of solutions can occur under which conditions.

Do some regions in fact amass a large proportion of an industry because of historical chance rather than geographic superiority? Santa Clara County in California (Silicon Valley) is a likely example. In the 1940's and early 1950's certain key people in the US electronics industry—the Varian brothers, William Hewlett and David Packard, William Shockley—set up shop near Stanford University; the local availability of engineers, supplies and components that these early firms helped to create made Santa Clara County extremely attractive to the 900 or so firms that followed. If these early entrepreneurs had preferred other places, the densest concentration of electronics in the country might well be somewhere else.

On a grander scale, if small events in history had been different, would the location of cities themselves be different? I believe the answer is yes. To the degree that certain locations are natural harbors or junction points on rivers or lakes, the pattern of cities today reflects not chance but geography. To the degree that industry and people are attracted to places where such resources are already gathered, small, early chance concentrations may have been the seeds of today's configuration of urban centers. "Chance and necessity," to use Jacques Monod's phrase, interact both have played crucial roles in the development of urban centers in the US. and elsewhere.

Self-reinforcing mechanisms other than these regional ones work in international high-tech manufacturing and trade. Countries that gain high volume and experience in a high-technology industry can reap advantages of lower cost and higher quality that may make it possible for them to shut out other countries. For example, in the early 1970's, Japanese automobile makers began to sell significant numbers of small cars in the US. As Japan gained market volume without much opposition from Detroit, its engineers and production workers gained experience, its costs fell and its products improved. These factors, together with improved sales networks, allowed Japan to increase
returns tend toward diminishing returns. In this model, balls of different colors are added to a table: the probability that the next ball will have a specific color depends on the current proportions of colors (top). Increasing returns occur in A (the graph shows the two-color case; arrows indicate likely directions of motion): a red ball is more likely to be added when there is already a high proportion of red balls. This case has two equilibrium points: one at which almost all balls are red; the other at which very few are red. Diminishing returns occur in B: a higher proportion of red balls lowers the probability of adding another. There is a single equilibrium point A combination of increasing and diminishing returns (C) yields many equilibrium points.

Nonlinear Probability Theory can predict the behavior of systems subject to increasing returns. In this model, balls of different colors are added to a table: the probability that the next ball will have a specific color depends on the current proportions of colors (top). Increasing returns occur in A (the graph shows the two-color case; arrows indicate likely directions of motion): a red ball is more likely to be added when there is already a high proportion of red balls. This case has two equilibrium points: one at which almost all balls are red; the other at which very few are red. Diminishing returns occur in B: a higher proportion of red balls lowers the probability of adding another. There is a single equilibrium point A combination of increasing and diminishing returns (C) yields many equilibrium points.
COMPANIES CHOOSE LOCATIONS to maximize profits, which are determined by intrinsic geographic preference (shown by color) and by the presence of other companies. In this computer-generated example, most of the first few companies settle in the green region, and so all new companies eventually settle there. Such clustering might appear to imply that the green region is somehow superior. In other runs of the program, however, the red and blue regions dominate instead.

Until recently conventional economics texts have tended to portray the economy as something akin to a large Newtonian system, with a unique equilibrium solution preordained by patterns of mineral resources, geography, population, consumer tastes and technological possibilities. In this view, perturbations or temporary shifts such as the oil shock of 1973 or the stock-market crash of 1987 are quickly negated by the opposing forces they elicit. Given future technological possibilities, one should in theory be able to forecast accurately the path of the economy as a smoothly shifting solution to the analytical equations governing prices and quantities of goods. History, in this view, is not terribly important; it merely delivers the economy to its inevitable equilibrium.

Positive-feedback economics, on the other hand, finds its parallels in modern nonlinear physics. Ferromagnetic materials, spin glasses, solid-state lasers and other physical systems that consist of mutually reinforcing elements show the same properties as the economic examples I have given. They "phase lock" into one of many possible configurations; small perturbations at critical times influence which outcome is selected, and the chosen outcome may have higher energy (that is, be less favorable) than other possible end states.

This kind of economics also finds parallels in the evolutionary theory of punctuated equilibrium—small events (the mutations of history) are often averaged away, but once in a while they become all-important in tilting parts of the economy into new structures and patterns that are then preserved and built on in a fresh layer of development.

In this new view, initially identical economies with significant increasing returns sectors do not necessarily select the same paths instead they eventually diverge. To the extent that small events determining the overall path always remain beneath the resolution of the economist’s lens, accurate forecasting of an economy’s future may be theoretically, not just practically, impossible. Steering an economy with positive feedbacks into the best of its many possible equilibrium states requires good fortune and good timing—a feel for the moments when beneficial change from one pattern to another is most possible. Theory can help identify these states and times, and it can guide policymakers in applying the right amount of effort (not too little but not too much) to dislodge locked-in structures.

The English philosopher of science Jacob Bronowski once remarked that economics has long suffered from a fatally simple structure imposed on it in the 18th century. I find it exciting that this is now changing. With the acceptance of positive feedbacks, economists’ theories are beginning to portray the economy not as simple but as complex, not as deterministic, predictable and mechanistic but as process-dependent, organic and always evolving.

FURTHER READING

